Bài viết sẽ chia sẻ với các bạn các kiến thức cơ bản về phương trình đường thẳng, cách viết phương trình đường thẳng và các dạng bài tập phương trình đường thẳng lớp 10 đầy đủ, chi tiết, dễ hiểu nhất, Các vectơ của đường thẳngVectơ chỉ phươngVectơ pháp tuyếnCác phương trình đường Ngày 10-10, ông Nguyễn Chí Thiện, Phó Giám đốc Sở NN-PTNT tỉnh Long An, cho biết, sự cố sụt lún ở tuyến đường đê bao bờ Bắc sông Vàm Cỏ Tây kết hợp giao thông nông thôn liên xã Tuyên Bình Tây - Vĩnh Bình thuộc huyện Vĩnh Hưng (xảy ra ngày 8-7) đã được khắc phục xong Tính chất của hai đường thẳng song song [ sửa | sửa mã nguồn] Nhờ tiên đề Euclid người ta suy ra tính chất sau: Nếu một đường thẳng cắt hai đường thẳng song song thì: Hai góc so le trong bằng nhau; Hai góc đồng vị bằng nhau; Hai góc trong cùng phía bù nhau. Định lý 1: Trong 1. Phép tịnh tiến biến đường thẳng thành đường thẳng song song với nó. 2. Phép biến hình biến mỗiđiểm M thành chính nó dọi là phép đồng nhất. 3. Phép đối xứng trục, phép quay, phép tịnh tiến đều bảo toàn khoảng cách giữa hai điểm. 4. Phép đối xứng tâm biến Theo tính chất bắc cầu: Hai đường thẳng cùng vuông góc với 1 đường thẳng thì chúng song song với nhua => Nếu 3 đường thẳng cùng vuông góc với 1 đường thẳng phân biệt thì chúng song song với nhau => Đúng b. Hai đường thẳng phải phân biệt đồng thời song song với nhau, do đó b Sai c. Theo dấu hiệu nhận biết hai đường thẳng song song => c Đúng d. Cho hai đường thẳng song song và . Tất cả những phép tịnh tiến biến thành là: A Các phép tịnh tiến theo vectơ với mọi vectơ có giá không song song với giá vetơ chỉ phương của B Các phép tịnh tiến theo vectơ với mọi vectơ vuông góc với vec-tơ chỉ phương của C Các phép tịnh tiến theo , trong đó hai điểm và tùy ý Hai đường thẳng song song, Toán 7 (Kết nối tri thức với cuộc sống), lớp 7. Lớp 7 Để nhận Coin\Xu, bạn có thể: Trả lời câu hỏi trong cộng đồng hỏi đáp của OLM để nhận coin; Chi tiết xem tại đây. Thông tin của bạn Bc9gRt. Bài viết trình bày định nghĩa, phương pháp chứng hai đường thẳng song song trong không gian và một số ví dụ minh họa điển hình, đây là dạng toán thường gặp trong chương trình Hình học 11 chương 2 đường thẳng và mặt phẳng trong không gian, quan hệ song nghĩa Hai đường thẳng gọi là song song nếu chúng đồng phẳng và không có điểm pháp chứng minh hai đường thẳng song song Để chứng minh hai đường thẳng song song trong không gian, ta sử dụng một trong các cách sau đây + Cách 1. Chứng minh chúng đồng phẳng rồi sử dụng các định lí đường trung bình, Thales đảo … quen thuộc trong hình học phẳng. + Cách 2. Chứng minh chúng cùng song song với đường thẳng thứ ba. + Cách 3. Dùng hệ quả Nếu hai mặt phẳng cắt nhau lần lượt đi qua hai đường thẳng song song thì giao tuyến của chúng song song hoặc trùng với một trong hai đường thẳng dụ minh họa Ví dụ 1 Cho hình chóp $ có đáy $ABCD$ là hình bình hành. a Tìm giao tuyến của hai mặt phẳng $SAB$ và $SCD.$ b Đường thẳng qua $D$ và song song $SC$ cắt mặt phẳng $SAB$ tại $I.$ Chứng minh $AI$ song song $SB.$a Mặt phẳng $SAB$ chứa $AB$, mặt phẳng $SCD$ chứa $CD$ mà $AB // CD$ nên $St = mp SCD ∩ mp SAB$ với $St // AB // CD.$ b Trong mặt phẳng $SCD$, đường thẳng qua $D$ và song song $SC$ cắt $St$ tại $I.$ Do $St ⊂ mp SAB$ $⇒I ∈ mp SAB.$ Ta có $SI // CD$ và $SC // DI$ nên $SIDC$ là hình bình hành. Do đó $SI // = CD.$ Mà $CD // = AB$ nên $SI // = AB.$ Tứ giác $SIAB$ là hình bình hành nên $AI // SB.$Ví dụ 2 Cho hình chóp $ có đáy $ABCD$ là hình thang với $AB$ song song $CD$ và $AB > CD.$ Gọi $M$, $N$ lần lượt là trung điểm $SA$, $SB.$ a Chứng minh $MN$ song song $CD.$ b Tìm giao điểm $J$ của $SC$ và mặt phẳng $ADN.$ c $AN$ và $DJ$ cắt nhau tại $I$. Chứng minh $SI // AB$ và $SA // IB.$a Ta có $MN$ là đường trung bình của tam giác $SAB$ nên $MN // AB$, mà $AB // CD$ nên $MN // CD.$ b Trong mặt phẳng $ABCD$, $AD$ cắt $BC$ tại $E.$ Trong mặt phẳng $SBC$, $NE$ cắt $SC$ tại $J.$ $J ∈ NE$ $⇒ J ∈ mp ADN.$ Vậy $J$ là giao điểm $SC$ và $ADN.$ c Ta có $AB ⊂ mp SAB.$ $CD ⊂ mp SCD.$ $AB // CD.$ $SI$ là giao tuyến của mặt phẳng $SAB$ và mặt phẳng $SCD.$ Vậy $SI // AB // CD.$ Ta có $SI // MN$ vì cùng song song với $AB$, mà $M$ là trung điểm $SA$ nên $MN$ là đường trung bình của tam giác $ASI.$ Do đó $\overrightarrow {SI} = 2\overrightarrow {MN} $ mà $\overrightarrow {AB} = 2\overrightarrow {MN} $ nên $\overrightarrow {SI} = \overrightarrow {AB} .$ Vậy $ABIS$ là hình bình hành, suy ra $SA // IB.$Ví dụ 3 Cho tứ diện $ABCD.$ Gọi $A_1$, $B_1$, $C_1$, $D_1$ lần lượt là trọng tâm các $ΔBCD$, $ΔACD$, $ΔABD$, $ΔABC.$ Gọi $G$ là giao điểm $AA_1$ và $BB_1.$ Chứng minh a $\frac{{AG}}{{A{A_1}}} = \frac{3}{4}.$ b $AA_1$, $BB_1$, $CC_1$ đồng Gọi $I$ là trung điểm $CD.$ Trên mặt phẳng $IAB$, ta có $\frac{{I{B_1}}}{{IA}} = \frac{{I{A_1}}}{{IB}} = \frac{1}{3}$ $ \Rightarrow {A_1}{B_1}//AB$ và $\frac{{{A_1}{B_1}}}{{AB}} = \frac{1}{3}.$ $ \Rightarrow \frac{{GA}}{{G{A_1}}} = \frac{{AB}}{{{A_1}{B_1}}} = 3$ $ \Rightarrow \frac{{GA}}{{G{A_1} + GA}} = \frac{3}{{3 + 1}} = \frac{{AG}}{{A{A_1}}}$ $1.$ b Tương tự, gọi ${G’} = A{A_1} \cap D{D_1}$, ta có $\frac{{G’A}}{{A{A_1}}} = \frac{3}{4}$ $2.$ Tương tự, gọi $G” = A{A_1} \cap C{C_1}$, ta có $\frac{{G”A}}{{A{A_1}}} = \frac{3}{4}$ $3.$ Từ $1$, $2$ và $3$, suy ra $\frac{{G’A}}{{A{A_1}}} = \frac{{G”A}}{{A{A_1}}} = \frac{{GA}}{{A{A_1}}}$ $ \Rightarrow G \equiv G’ \equiv G”.$Ví dụ 4 Cho hình chóp $ có đáy $ABCD$ là hình bình hành. Lấy $M$, $N$, $P$, $Q$ lần lượt trên $BC$, $SC$, $SD$, $AD$ sao cho $MN // SB$, $NP // CD$, $MQ // AB.$ a Chứng minh $PQ // SA.$ b Gọi $K$ là giao điểm $MN$ và $PQ.$ Chứng minh $SK // AD // BC.$a Do $MQ//AB \Rightarrow \frac{{DQ}}{{DA}} = \frac{{CM}}{{CB}}$ $1.$ Do $MN//SB \Rightarrow \frac{{CM}}{{CB}} = \frac{{CN}}{{CS}}$ $2.$ Do $NP//CD \Rightarrow \frac{{CN}}{{CS}} = \frac{{DP}}{{DS}}$ $3.$ Từ $1$, $2$ và $3$, suy ra $\frac{{DQ}}{{DA}} = \frac{{DP}}{{DS}}$ $ \Rightarrow PQ///SA.$ b Mặt phẳng $SAD$ và $SBC$ đã có chung điểm $S.$ $K \in NM \Rightarrow K \in SBC.$ $K \in PQ \Rightarrow K \in SAD.$ Vậy $SK = SAD \cap SBC.$ Ta có $AD \subset SAD$, $BC \subset SBC$, mà $AD//BC.$ Vậy $SK = SAD \cap SBC$ thì $SK//AD//BC.$Ví dụ 5 Cho hình chóp $ có $ABCD$ là hình bình hành tâm $O$. Gọi $M$ và $N$ lần lượt là trung điểm của $SC$ và $OB.$ Gọi $I$ là giao điểm của $SD$ và mặt phẳng $AMN.$ Tính tỉ số $\frac{{SI}}{{ID}}.$Trong mặt phẳng $ABCD$, gọi $E$ và $F$ là giao điểm của $AN$ với $CD$ và $BC.$ Trong mặt phẳng $SCD$, gọi $I$ là giao điểm của $EM$ và $SD.$ $I ∈ ME$ $⇒ I ∈ mp AMN.$ Vậy $I$ là giao điểm của $SD$ và mặt phẳng $AMN.$ Ta có $BF//AD$ $ \Rightarrow \frac{{BF}}{{AD}} = \frac{{NB}}{{ND}}$ $ = \frac{{\frac{1}{2}OB}}{{OD + \frac{1}{2}OB}} = \frac{{\frac{1}{2}OB}}{{\frac{3}{2}OB}} = \frac{1}{3}$ $ \Rightarrow BF = \frac{1}{3}AD$ $ \Rightarrow CF = \frac{2}{3}AD.$ Ta có $CF//AD$ $ \Rightarrow \frac{{EC}}{{ED}} = \frac{{CF}}{{AD}} = \frac{2}{3}.$ Trong mặt phẳng $SCD$ vẽ $CJ//SD$ $J \in EI$. Ta có $\frac{{JC}}{{ID}} = \frac{{EC}}{{ED}} = \frac{2}{3}$ $1.$ $JC//SI$ $ \Rightarrow \frac{{CJ}}{{SI}} = \frac{{MC}}{{MS}} = 1$ $ \Rightarrow CJ = SI$ $2.$ Từ $1$ và $2$ suy ra $\frac{{SI}}{{ID}} = \frac{2}{3}.$Ví dụ 6 Cho hình lập phương $ cạnh $a.$ Gọi $M$, $N$, $P$, $Q$ lần lượt là trung điểm của $A’B’$, $C’B’$, $CC’$, $AA’.$ a Chứng minh tứ giác $MNPQ$ là hình thang cân. b Tính chu vi và diện tích tứ giác $MNPQ$ theo $a.$a Ta có $MN$ là đường trung bình của tam giác $A’B’C’$ nên $MN//A’C’$ $1.$ Ta có $\overrightarrow {A’Q} = \frac{1}{2}\overrightarrow {A’A} $ và $\overrightarrow {C’P} = \frac{1}{2}\overrightarrow {C’C} .$ Mà $\overrightarrow {A’A} = \overrightarrow {C’C} $ nên $\overrightarrow {A’Q} = \overrightarrow {C’P} .$ Do đó $A’QPC’$ là hình bình hành nên $PQ // A’C’$ $2.$ Từ $1$ và $2$ suy ra $PQ//MN.$ Ta có $\Delta A’MQ = \Delta C’PN$ $ \Rightarrow MQ = NP.$ Vẽ $MH$ và $NK$ vuông góc với $PQ.$ Ta có $\Delta MHQ = \Delta NKP$ nên $\widehat {MQH} = \widehat {NPK}.$ Do đó $MNPQ$ là hình thang Ta có $MN = \frac{{A’C’}}{2} = \frac{{a\sqrt 2 }}{2}.$ $PQ = A’C’ = a\sqrt 2 .$ $NP = MQ = \frac{a}{2}\sqrt 2 .$ Do đó chu vi tứ giác $MNPQ$ là $\frac{{a\sqrt 2 }}{2} + a\sqrt 2 + 2\left {\frac{a}{2}\sqrt 2 } \right = \frac{{5a\sqrt 2 }}{2}.$ Do $\Delta MQH = \Delta NKP$ nên $HQ = KP.$ Vậy $KP = QH = \frac{1}{2}PQ – HK$ $ = \frac{1}{2}PQ – MN$ $ = \frac{1}{2}\left {a\sqrt 2 – \frac{{a\sqrt 2 }}{2}} \right = \frac{{a\sqrt 2 }}{4}.$ Do tam giác $NPK$ vuông $ \Rightarrow N{K^2} = N{P^2} – K{P^2}$ $ = \frac{{{a^2}}}{2} – \frac{{{a^2}}}{8} = \frac{{6{a^2}}}{{16}}.$ Vậy diện tích tứ giác $MNPQ$ là $\frac{1}{2}NKMN + PQ$ $ = \frac{{a\sqrt 6 }}{8}\left {\frac{{a\sqrt 2 }}{2} + a\sqrt 2 } \right = \frac{{3{a^2}\sqrt 3 }}{8}.$Ví dụ 7 Cho tam giác $ABC$ nằm trong mặt phẳng $α.$ Gọi $Bx$, $Cy$ là hai nửa đường thẳng song song nằm về cùng phía đối với mặt phẳng $α.$ Gọi $M$ và $N$ là hai điểm di động trên $Bx$, $Cy$ sao cho $CN = 2BM.$ a Chứng minh $MN$ luôn qua một điểm cố định $I$ khi $M$, $N$ di động. b Lấy $E$ thuộc đoạn $AM$ với $EM = \frac{1}{3}AE$, $IE$ cắt $AN$ tại $F$, $BE$ cắt $CF$ tại $Q.$ Chứng minh $AQ$ song song $Bx$ và $Cy$, và mặt phẳng $QMN$ chứa một đường thẳng cố định khi $M$, $N$ di Trong mặt phẳng $Bx, Cy$, gọi $I$ là giao điểm của $MN$ và $BC.$ Do $MB // NC$ nên $\frac{{IB}}{{IC}} = \frac{{MB}}{{NC}} = \frac{1}{2}$ $ \Rightarrow IB = 2IC$, suy ra $B$ là trung điểm $IC.$ Vậy $MN$ di động luôn qua $I$ cố định. b Ta có $Q \in BE \Rightarrow Q \in mpABM.$ $Q \in CF \Rightarrow Q \in mpANC.$ Vậy $AQ = mp ABM ∩ mp ANC.$ Mà hai mặt phẳng $ABM$ và mặt phẳng $ANC$ lần lượt chứa hai đường thẳng song song $BM$ và $NC.$ Do đó $AQ // BM // NC.$ Ta có $MB // AQ$ $ \Rightarrow \frac{{MB}}{{AQ}} = \frac{{EM}}{{EA}} = \frac{1}{3}.$ Gọi $K$ là giao điểm của $MQ$ và $BA$ ta có $\frac{{KB}}{{KA}} = \frac{{MB}}{{AQ}} = \frac{1}{3}$ $ \Rightarrow KB = \frac{1}{3}KA.$ Vậy $K$ cố định. Ta có $K ∈ MQ ⇒ K ∈ mp MNQ.$ $I ∈ MN ⇒ I∈ mp MNQ.$ Do đó mặt phẳng $QMN$ di động nhưng luôn chứa đường thẳng cố định $IK.$ [ads] Ví dụ 8 Cho tam giác $ABC.$ Từ $A$, $B$, $C$ vẽ các nửa đường thẳng song song cùng chiều $Ax$, $By$, $Cz$ không nằm trong mặt phẳng $ABC.$ Trên $Ax$, $By$, $Cz$ lần lượt lấy đoạn $AA’ = a$, $BB’ = b$, $CC’ = c.$ Gọi $I$, $J$, $K$ lần lượt là giao điểm $B’C’$, $A’C’$, $A’B’$ với mặt phẳng $ABC.$ Gọi $G$, $G’$ là trọng tâm tam giác $ABC$ và tam giác $A’B’C’.$ a Chứng minh $\frac{{IB}}{{IC}} \cdot \frac{{JC}}{{JA}} \cdot \frac{{KA}}{{KB}} = 1.$ b Chứng minh $GG’ // AA’.$ Tính $GG’$ theo $a$, $b$, $c.$Ta có $CC’//BB’ \Rightarrow \frac{{IB}}{{IC}} = \frac{{BB’}}{{CC’}} = \frac{b}{c}.$ $CC’//AA’ \Rightarrow \frac{{JC}}{{JA}} = \frac{{CC’}}{{AA’}} = \frac{c}{a}.$ $AA’//BB’ \Rightarrow \frac{{KA}}{{KB}} = \frac{{AA’}}{{BB’}} = \frac{a}{b}.$ Do đó $\frac{{IB}}{{IC}} \cdot \frac{{JC}}{{JA}} \cdot \frac{{KA}}{{KB}} = \frac{b}{c} \cdot \frac{c}{a} \cdot \frac{a}{b} = 1.$ b Gọi $H$, $H’$ là trung điểm $CB$ và $C’B’.$ $HH’$ là đường trung bình của hình thang $CC’B’B$ nên $HH’//BB’//AA’//CC’$ $1.$ $G$ là trọng tâm tam giác $ABC$ $ \Rightarrow \frac{{AG}}{{AH}} = \frac{2}{3}.$ $G’$ là trọng tâm tam giác $A’B’C’$ $ \Rightarrow \frac{{A’G’}}{{A’H’}} = \frac{2}{3}.$ Vậy $\frac{{AG}}{{AH}} = \frac{{A’G’}}{{A’H’}} \Rightarrow GG’//HH’$ $2.$ Từ $1$ và $2$ suy ra $GG’//AA’.$ Gọi $M$ là giao điểm $AH’$ và $GG’.$ Ta có $G’M//AA’ \Rightarrow \frac{{G’M}}{{AA’}} = \frac{{H’G’}}{{H’A’}} = \frac{1}{3}$ $ \Rightarrow G’M’ = \frac{a}{3}.$ Ta có $MG//HH’ \Rightarrow \frac{{MG}}{{HH’}} = \frac{{AG}}{{AH}} = \frac{2}{3}$ $ \Rightarrow MG = \frac{2}{3}HH’$ $ = \frac{2}{3}\frac{{BB’ + CC’}}{2} = \frac{{b + c}}{3}.$ Do đó $GG’ = MG’ + MG = \frac{{a + b + c}}{3}.$Ví dụ 9 Cho hình chóp $ có đáy là hình thang $ABCD$ với đáy $AD$ và $BC$ có $AD = a$, $BC = b$ với $a > b.$ Gọi $I$ và $J$ lần lượt là trọng tâm $ΔSAD$, $ΔSBC$, $SB$ và $SC$ cắt mặt phẳng $ADJ$ tại $M$, $N$, $SA$, $SD$ cắt mặt phẳng $BCI$ tại $P$, $Q.$ a Chứng minh $MN$ song song $PQ.$ b Giả sử $AM$ cắt $BP$ tại $E$, $CQ$ cắt $DN$ tại $F.$ Chứng minh $EF$ song song $MN$ và $PQ.$ Tính $EF$ theo $a$ và $b.$a Ta có $I \in IBC \cap SAD.$ Ta có $\left. {\begin{array}{*{20}{l}} {AD//BC}\\ {AD \subset SAD}\\ {BC \subset IBC} \end{array}} \right\}$ $ \Rightarrow SAD \cap IBC = PQ.$ Với $I∈PQ$ và $PQ//AD//BC.$ Tương tự $J \in JAD \cap SBC.$ $\left. {\begin{array}{*{20}{l}} {AD//BC}\\ {AD \subset JAD}\\ {BC \subset SBC} \end{array}} \right\}$ $ \Rightarrow JAD \cap SBC = MN.$ Với $J \in MN$ và $MN//AD//BC.$ Do đó $MN//PQ.$ b Ta có $\left. {\begin{array}{*{20}{l}} {\mathop E\limits^. \in AM \Rightarrow E \in AMND}\\ {E \in PQ \Rightarrow E \in BPCQ} \end{array}} \right\}$ $ \Rightarrow E \in AMND \cap BPCQ.$ Ta có $\left. {\begin{array}{*{20}{l}} {F \in DN \Rightarrow F \in AMND}\\ {F \in CQ \Rightarrow E \in BPCQ} \end{array}} \right\}$ $ \Rightarrow F \in AMND \cap BPCQ.$ Vậy $EF = AMND \cap BPCQ.$ Ta có $\left. {\begin{array}{*{20}{l}} {MN \subset AMND}\\ {PQ \subset BPCQ}\\ {MN//PQ} \end{array}} \right\}$ $ \Rightarrow EF//PQ//MN.$ Gọi $K$ là giao điểm $EF$ và $PC.$ Ta có $EK//BC$ $ \Rightarrow \frac{{KE}}{{BC}} = \frac{{PE}}{{PB}}.$ Do $I$ là trọng tâm tam giác $SAD$ và $PI//AD$ $ \Rightarrow \frac{{SP}}{{AS}} = \frac{2}{3}.$ Do $J$ là trọng tâm tam giác $SBC$ và $MJ//BC$ $ \Rightarrow \frac{{SM}}{{SB}} = \frac{2}{3}.$ Do đó $\frac{{SP}}{{SA}} = \frac{{SM}}{{SB}} = \frac{2}{3}$ $ \Rightarrow PM//AB$ $ \Rightarrow \frac{{PE}}{{EB}} = \frac{{PM}}{{AB}}.$ Mà $\frac{{PM}}{{AB}} = \frac{{SP}}{{SA}} = \frac{2}{3}.$ Do đó $\frac{{PE}}{{EB}} = \frac{2}{3}$ $ \Rightarrow \frac{{EK}}{{BC}} = \frac{{PE}}{{PB}} = \frac{{PE}}{{PE + EB}}$ $ = \frac{1}{{1 + \frac{{EB}}{{PE}}}} = \frac{1}{{1 + \frac{3}{2}}} = \frac{2}{5}$ $ \Rightarrow EK = \frac{2}{5}BC = \frac{2}{5}b.$ Tương tự $KF = \frac{2}{5}a.$ Vậy $EF = EK + KF = \frac{2}{5}a + b.$Bài tập tự luyện Bài tập 1 Cho tứ diện $ABCD.$ Gọi $M$, $N$, $P$, $Q$, $R$, $S$ lần lượt là trung điểm của $AB$, $CD$, $BC$, $AD$, $AC$, $BD.$ a Chứng minh $MNPQ$ là hình bình hành. b Chứng minh $MN$, $PQ$, $RS$ cắt nhau tại trung điểm của mỗi tập 2 Cho hình chóp $ có đáy $ABCD$ là hình thang có cạnh bên $AD$, $BC.$ a Xác định giao tuyến $d$ của $SAB$ và $SCD.$ b Gọi $M$, $N$ lần lượt là trọng tâm của tam giác $SAD$ và $SBC.$ Chứng minh $d // MN.$Bài tập 3 Cho hai hình bình hành $ABCD$, $ABEF$ không cùng nằm trên một mặt phẳng. a Chứng minh $CE // DF.$ b Gọi $M$, $N$ là hai điểm trên $AC$, $AD$ sao cho $\frac{{AM}}{{AC}} = \frac{{AN}}{{AD}} = m.$ Gọi $H$, $K$ là hai điểm trên $BF$ và $AF$ sao cho $\frac{{FK}}{{FA}} = \frac{{FL}}{{FB}} = n$ với $m,n \in 0;1$. Chứng minh $MN // KL.$ c Cho $m = \frac{2}{5}$ và $n = \frac{3}{5}$. Chứng minh $NK // DF.$Bài tập 4 Cho tứ diện $ABCD.$ Gọi $P$, $Q$ lần lượt là trung điểm của $AC$, $BC.$ Gọi $R$ là điểm trên $BD$ sao cho $BR = 2RD.$ a Xác định $E$, $F$ là giao điểm của $RPQ$ với $CD$, $AD.$ b Tìm giao tuyến của $PQR$ và $ABE.$ c Chứng minh $R$, $F$ lần lượt là trọng tâm của tam giác $BCE$ và $ACE.$ d Chứng minh $FR // PQ.$ e Tính tỉ số diện tích mà mặt phẳng $PQR$ chia cắt tam giác $ACD.$Bài tập 5 Cho hình chóp $ có $ABCD$ là hình bình hành tâm $O.$ Gọi $M$, $N$ lần lượt là trung điểm của $SC$, $OB.$ a Tìm giao điểm $I$ của $SD$ và $AMN.$ b Tính $\frac{{SI}}{{ID}}.$Bài tập 6 Cho hình chóp $ có đáy là tứ giác lồi, $O$ là giao điểm của $AC$ và $BD.$ Gọi $M$, $N$, $E$, $F$ lần lượt là trung điểm của $SA$, $SB$, $SC$, $SD.$ Chứng minh a $ME // AC$ và $NF // BD.$ b Ba đường thẳng $EM$, $NF$, $SO$ đồng quy. c Bốn điểm $M$, $N$, $E$, $F$ đồng tập 7 Cho hình chóp $ có đáy là hình chữ nhật. Gọi $M$, $N$, $E$, $F$ lần lượt là trọng tâm của tam giác $SAB$, $SBC$, $SCD$ và $SDA.$ a Chứng minh tứ giác $MNEF$ là hình thoi. b Gọi $O$ là giao điểm của $AC$ và $BD.$ Chứng minh $ME$, $NF$ và $SO$ đồng tập 8 Cho tứ diện $ABCD.$ Gọi $I$, $J$ lần lượt là trung điểm của $BC$ và $BD.$ Lấy $E$ trên $AD$ $E ≠ A, D.$ a Xác định mặt cắt của tứ diện và $IJE.$ b Tìm vị trí của điểm $E$ trên $AD$ sao cho thiết diện là hình bình hành. c Tìm điều kiện của $ và vị trí $E$ trên $AD$ sao cho thiết diện là hình thoi. ta như hai đường thẳng song song, chỉ yêu mà chẳng chạm được tới nhau yu1512 pov drarry Thế nào là hai start color 1fab54, start text, đ, ư, ờ, n, g, space, t, h, ẳ, n, g, space, v, u, o, with, \^, on top, n, g, space, g, o, with, \', on top, c, end text, end color 1fab54 và hai start color 7854ab, start text, đ, ư, ờ, n, g, space, t, h, ẳ, n, g, space, s, o, n, g, space, s, o, n, g, end text, end color 7854ab?Hai start color 1fab54, start text, đ, ư, ờ, n, g, space, t, h, ẳ, n, g, space, v, u, o, with, \^, on top, n, g, space, g, o, with, \', on top, c, end text, end color 1fab54 là hai đường thẳng cắt nhau và tạo thành bốn góc vuông tại giao điểm của hai đường start color 7854ab, start text, đ, ư, ờ, n, g, space, t, h, ẳ, n, g, space, s, o, n, g, space, s, o, n, g, end text, end color 7854ab là hai đường thẳng không bao giờ cắt nhau không bao giờ giao nhau. Chúng luôn cách nhau một khoảng không biết thêm về các đường thẳng song song và vuông góc? Hãy xem video luyện tập 1 Nhận dạng các đường thẳng song song và vuông gócMuốn làm thêm các bài như thế này? Hãy xem bài tập sau. Bài luyện tập 2 Vẽ các đường thẳng song song và vuông góc Tìm điều kiện để hai đường thẳng cắt nhau, song song, trùng nhau, vuông góc. Cho hai đường thẳng y = ax + b và y’ = a’x + b’ Thông báo Giáo án, tài liệu miễn phí, và các giải đáp sự cố khi dạy online có tại Nhóm giáo viên mọi người tham gia để tải tài liệu, giáo án, và kinh nghiệm giáo dục nhé! Hai đường thẳng vuông góc với nhau = đường thẳng song song với nhau a = a’ và b ≠ b’.Hai đường thẳng cắt nhau a ≠ a’.Hai đường thẳng trùng nhau a = a’ và b = b’.Trong chương trình toán lớp 9, bên cạnh phần đại số thì hình học là một phần không kém quan trọng. Hình học hỗ trợ kỹ năng tư duy toán học tượng hình. Để học tốt toán cần tìm hiểu và ghi nhớ kỹ lưỡng các công thức. Hình học trong toán 9 Toán học là môn học quan trọng, cần được đầu tư kỹ lưỡng về thời gian học. Thời lượng làm bài tập chia đều cho khoảng thời gian trong ngày. Tìm kiếm thêm tài liệu để tham khảo, tìm hiểu bài tập để làm bổ sung. Bên cạnh đó kết hợp với nâng cao năng lực tự học tìm hiểu cái mới. Giải quyết các bài khó bằng phương pháp tự học, học nhóm. Lập nhóm để giúp nhau học tập hiệu quả hơn. Kết hợp vui chơi giải trí, thư giãn đầu óc. Lớp 9 là lớp cuối cấp, chuẩn bị bước vào kì thi vào lớp 10, hẳn sẽ gặp nhiều áp lực. Nhưng các em chưa cần phải quá bận tâm về vấn đề này. Phía trước còn chặng đường dài học tập. Tập trung ôn luyện để chuẩn bị cho kỳ thi chuyển cấp. Nắm vững kiến thức làm tiền đề cho các cấp học sau này. Dùng kiến thức để áp dụng trong cuộc sống hằng ngày. Bên cạnh đó, học tập không bao giờ là đủ, không chỉ môn toán mà còn những môn học khác cũng cần được chú trọng. Nền tảng khoa học để bổ trợ cho nhau. Hai đường thẳng song song Phần hình học của chương trình toán lớp 9 gồm các kiến thức đã có từ lớp trước. Được triển khai và chuyên sâu hơn. Nội dung về không gian, hình khối. Trung điểm, tia, đường thẳng, các phương pháp chứng minh. Để làm tốt bài tập cần nắm rõ các công thức tính toán tính diện tích, thể tích. Các điều kiện để bằng nhau, giao nhau, song song, đồng dạng. Về đường thẳng có các trạng thái, trường hợp như sau vuông góc với nhau, song song với nhau, cắt nhau và cuối cùng là trùng nhau. Hai đường thẳng được cho là vuông góc với nhau khi chỉ số a x a’= -1. Khi đó, chúng gặp nhau và tạo thành 1 góc 90 độ. Trường hợp song song là khi chỉ số a = a’ và b ≠ b’, trong trường hợp này thì 2 đường thẳng không có điểm chung và không giao nhau tại 1 số thời điểm. Khi chỉ số a ≠ a’ sẽ dẫn đến trường hợp 2 đường thẳng giao nhau. Trùng nhau ở trường hợp a = a’. Hai đường thẳng cắt nhau Hai đường thẳng cắt nhau là dạng cơ bản của chủ đề mối quan hệ giữa hai đường thẳng. Hai đường thẳng được gọi là cắt nhau khi chúng cùng đi qua một điểm. Như vậy, với từng dạng toán về hai đường thẳng cắt nhau ta có cách giải khác nhau. Thứ nhất, chứng minh hai đường thẳng đã cho cắt nhau. Phương pháp làm như sau Bước 1 Lập hệ phương giao điểm của hai đường thẳngBước 2 Tìm nghiệm của hệ phương trình đó. Nếu hệ phương trình có nghiệm chứng tỏ hai đường thẳng cắt nhau. Nếu hệ phương trình vô nghiệm thì hai đường thẳng không cắt nhau. Nếu hệ phương trình vô số nghiệm thì hai đường thẳng trùng 3 Kết luận và kiểm tra lại là phương pháp chung đối với dạng toán này. Nếu mà hai phương trình đường thẳng đã cho là hai đường thẳng cụ thể thì có thể tìm trực tiếp nghiệm. Nếu hai đường thẳng cho ở dạng tham số thì cần biện luận theo tham số. Trong nhiều trường hợp kể cả là phương trình chứa tham số nhưng vẫn tìm được giao điểm cụ thể của hai đường thẳng. Dạng toán thứ hai là chứng minh một điểm thuộc đường thẳng này cũng thuộc đường thẳng kia. Đây là dạng toán cơ bản mà tất cả học sinh đều được làm. Nó sẽ giúp học sinh hiểu rõ hơn mối quan hệ cắt nhau giữa hai đường thẳng. Phương pháp làm hết sức đơn giản. Chỉ cần thay giá trị tọa độ của điểm đã cho vào công thức hai đường thẳng. Nếu cả hai đều thỏa mãn luôn đúng thì chứng minh được bài toán. Điều này cũng có nghĩa là đây chính là giao điểm của hai đường thẳng. Hai đường thẳng vuông góc Như chúng tôi đã trình bày ở trên, hai đường thẳng được gọi là vuông góc khi mà tích hệ số góc của chúng bằng -1. Vậy, với chuyên đề này có những dạng toán nào. Thứ nhất, chứng minh hai đường thẳng vuông góc. Học sinh chỉ cần xác định đúng hệ số góc của đường thẳng. Đây là bước học sinh dễ mắc sai lầm nhất. Cần đưa phương trình đường thẳng về dạng tổng quát thì mới được xác định hệ số góc. Khi đã có hệ số góc của hai đường thì thực hiện tích của chúng. Nếu tích thỏa mãn bằng -1 thì chứng minh hai đường thẳng vuông góc. Dạng toán thứ hai là tìm giá trị tham số để thỏa mãn hai đường thẳng vuông góc. Các bước làm cụ thể như sau Bước 1 Xác định hệ số góc của hai đường thẳng theo tham sốBước 2 Lập biểu thức tích hai hệ số góc bằng -1Bước 3. Giải phương trình chứa tham số đã lập ở bước 2Bước 4 Kết luận và kiểm tra lại bàiHai dạng toán này là dạng cơ bản thường gặp. Tuy nhiên khi lên các lớp cao hơn độ khó cũng cao hơn hẳn. Ví dụ, chứng minh hai mặt phẳng vuông góc, tìm góc trong hình khong gian,… Tóm lại, mối quan hệ giữa các đường thẳng là nền tảng cơ bản cho kiến thức nâng cao hơn. Do đó, các bạn cần nắm chắc tất cả lý thuyết liên quan đến chuyên đề này. Đồng thời cố gắng vận dụng nhanh chóng và linh hoạt để nâng cao kết quả học tập. Sưu tầm Trần Thị Nhung Tải tài liệu miễn phí ở đây Tải tài liệu miễn phí ở đây

để hai đường thẳng song song